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ABSTRACT 

 
Future space missions will process and analyze imagery 
onboard placing greater demands on flight computing.  
Traditional flight hardware provides modest compute, even 
when compared to laptop and desktop computers. A new 
generation of commercial off the shelf (COTS) processors, 
such as Qualcomm Snapdragon, deliver significant compute 
in small Size Weight and Power (SWaP) and offer direct 
hardware acceleration in the form of Graphics Processing 
Units (GPU) and Digital Signal Processors (DSP).  We 
benchmark a variety of instrument processing and analysis 
software (including machine learned classifiers) on a 
Qualcomm Snapdragon SoC currently hosted by HPE’s 
Spaceborne Computer-2 (SBC-2) onboard the International 
Space Station. 
 
Index Terms— Edge processing, Space Applications, 
Machine Learning, Artificial Intelligence 
 

1. INTRODUCTION 
 
Future space missions will need more powerful onboard 
autonomy to meet mission and science objectives by (1) 
handling variations in predicted execution and rapid 
response to science events and (2) reducing the extremely 
large amounts of data produced by instruments, especially 
hyperspectral and radar. Traditional radiation hardened 
flight hardware provides only modest computing for future 
applications. A new generation of processors, such as the 
Qualcomm Snapdragon 855 [Qualcomm 2021] support 
onboard data processing via CPU, GPU and DSP - offering 
the promise of more powerful edge computing. The 
Snapdragon 855 was chosen for this study due to its good 
SWaP and prior flight experience with the Snapdragon 820 
on the Perseverance rover. 
      We benchmark remote sensing image processing and 
analysis algorithms on a Snapdragon processor onboard the 
ISS hosted by Spaceborne Computer-2 by Hewlett Packard 

Enterprise [HPE 2021]. Advancing these ground algorithms 
to embedded ISS deployment is a step towards running 
algorithms on a satellite or Mars Rover, to enable onboard 
data analysis, targeted downloads, commanding of space 
assets, and onboard science interpretation. 
      The Qualcomm Snapdragon 855 SoC has multiple 
subsystems, including a CPU cluster with 8 ARM cores, an 
Adreno GPU, a Compute Digital Signal Processor (cDSP), 
and an AI Processor (AIP). The Snapdragon Neural 
Processing Unit (NPU) API will use other components to 
optimize deep learning classification tasks. 
      The CPU of the Snapdragon 855 has been benchmarked 
against the other flight hardware such as the GR740 and 
RAD750. The 8 ARM cores on the Snapdragon produce a 
total DMIPS average of 138,255 compared to 1,836 on the 
GR740 and 500 on the RAD750. The GPU (Adreno 640) 
produces 950 FP32 GFLOPS compared to 472 on a Nvidia 
Jetson Nano. The energy consumption of the Snapdragon 855 
CPU has a max of 6W and the GPU takes a max of 3.5W 
[Towfic et al. 2022]. 
      Two Snapdragon 855 handheld development boards were 
integrated with the HPE Spaceborne Computer-2 (SBC-2) 
which provides connectivity, storage, and compute support.  
SBC-2 was launched as part of the ISS resupply mission 
Cygnus NG-15 on February 20th, 2021 and the Snapdragon 
boards have been operational since March 2021 with scores 
of applications tested as of December 2021.  
 

2. APPLICATIONS AND BENCHMARKS 
 

The applications chosen were readily available past, present, 
and proposed missions. We benchmark a range of instrument 
processing algorithms with applications to terrestrial, 
planetary, and astronomy and astrophysics.  We also 
benchmark instrument targeting algorithms for the “Dynamic 
Targeting” concept in which a lookahead sensor is used to 
identify targets (e.g. convective storms) [Swope et al. 2021] 
or avoidances (e.g. clouds [Hasnain et al. 2021] to inform 
targeting and configuration of a primary sensor. 
 
3.1. Instrument Processing 
We report on a range of instrument processing algorithms 
below.   
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Decision Trees.  Manual decision tree of modest size (~10 
nodes) for per pixel classification of thermal anomalies 
(volcanic or wildfire) [Davies et al. 2006] or cryosphere 
(snow water, ice, land) [Doggett et al. 2005].  The benchmark 
runs one image through both the thermal and cryosphere 
decision trees. CPU and GPU implementation runtimes are  
reported.  
 

Application Components 
Used 

Runtime 

Decision Trees (Thermal + 
Cryosphere) 

CPU, GPU CPU: 21s 
GPU: 13s 

Synthetic Aperture Radar 
(SAR) Image Formation 

CPU+GPU  217s 

Match Filters (Cuprite) CPU 850s 

Match Filters (lunar) CPU 108.4s 

Hyperspectral Compression CPU, GPU, DSP See Table 2 

Hyperspectral unmixing 
(SMACC) 

CPU 16.9s 

SMICES Classification CPU See Table 3 

Salience Detector CPU 23s 

Landing Vision System CPU COARSE: 2.46s 
FINE: 2s 

HOWFS CPU 2.2h, 1.8h 

Europa Lander Stereo Vision CPU 19s - 15.6 min 

Table 1: Image Processing Applications 
 
Synthetic Aperture Radar (SAR) Image Formation.  
Pipeline of 3 CPU and 2 GPU applications adapted from the 
Uninhabited Aerial Vehicle SAR (UAVSAR) project 
[Hawkins and Tung 2019].  Primarily a row wise and column 
wise 2D FFT with filters.  Image size is 27916 x 26880 and 
takes 217s where performance goal is 240s which 
corresponds to keeping up with instrument acquisition rate. 
Performance likely could be further improved as the GPU 
utilization is approximately 60%. 
 
Match Filters.  CPU application of signature detection for 
remote sensing imaging spectroscopy [Thompson et al. 
2015].  First test is mineral detection at Cuprite, NV site using 
AVIRIS 2014 data.  Most of the runtime is I/O.  For an image 
size of 670x2512x425(spectra), 8 images, one mineral 
signature is 850s on the Snapdragon CPU.  For a second lunar 
dataset using M3 data searching for several forms of water 
(OH, molecular H2O, and H2O ice) with an image size of 304 
x 1000 x 301 produces a runtime of 108.4s. 
 

Hyperspectral Compression [Hernandez-Cabronero et al. 
2021].  This test performs lossless compression on a set of 
test images for the Earth Surface Mineral Dust Source 
Investigation (EMIT) mission [EMIT 2021].  Each image is 
64 lines x 640 samples per line with 481 spectral bands per 
pixel.  CPU, DSP, and GPU ports are reported.  
MSamples/sec = lines x samples per line x bands / runtime 
and the EMIT Target is 23.1 MSamples/sec (instrument 
throughput).  See runtimes in table below. 
 

 

Table 2: Performance of Hyperspectral Compression on 
various Hardware Configurations 
 
Hyperspectral. This implements Sequential Maximum 
Angle Convex Cone (SMACC) spectral endmember 
extraction as previously flown on the Earth Observing One 
spacecraft [Thompson et al. 2012].  This is a CPU 
implementation that extracts the top 5 endmembers from the 
AVIRIS-NG Data.  The image size is 638 x 679 x 425 spectra 
and the runtime is 16.9 seconds (compared to 6h onboard EO-
1).   
 
SMICES Classification. SMICES is an instrument concept 
for a “smart” deep ice convective storm hunting radar [NASA 
2019, Swope et al. 2021, Bosch-Lluis et al. 2021].  In the 
SMICES concept a lookahead radiometer acquires data to 
detect deep convective ice storms and a radar is used to study 
detected storms in greater detail. The SMICES machine 
learning classification application [Chien et al. 2021]  
classifies simulated radiometer data into five separate cloud 
types (clear, thin cirrus, cirrus, rainy anvil, and convection 
core)  to identify the location of the deep convective storms. 
The application runs a random decision forest (RDF), multi-
layer perceptron (MLP), simple vector machine (SVM), and 
naïve Bayes Gaussian classifiers over 198,016 pixels with 8 
bands of radiance. Each classifier is run on the Snapdragon 
CPU in a single threaded python application. The runtimes 
for each classifier are listed below. 
 

Classifier RDF MLP SVM Bayes 

Runtime (s) 0.5 0.55 1316.7 .27 

Table 3: Snapdragon 855 CPU runtime for SMICES 
Classifiers 
 
Salience Detector. CPU application for generating salience 
maps of large image swaths. This detector can be used to 
reduce data volume from imagery obtained by the High 



 

Resolution Imaging Experiment (HiRISE) instrument 
onboard the Mars Reconnaissance Orbiter. The salience 
detector uses computer vision techniques, with parameters 
optimized by a genetic algorithm, to detect landmarks of 
potential interest to planetary scientists [Wagstaff et al. 
2021]. Runtime shown is for a single grayscale image of size 
2048 x 4032 pixels. 

 
Landing Vision System (Astrotipping).  This is a descent 
landing system that estimates cross velocity based on descent 
imagery and uses this to both localize and avoid landing 
hazards.  The baseline system uses a hybrid FPGA+ CPU 
system.  The problem is divided into coarse landmark 
matching and fine landmark matching phases.  In the 
COARSE phase a 1024 x 1024 image is warped and matched 
to a template via FFT, taking 2.46s on the Snapdragon CPU.  
In the FINE phase a 1024 x 1024 image is processed using 
normalized cross correlation, taking 2s. Work is ongoing to 
improve this application using pre-optimized functions 
provided by the FastCV library [Qualcomm, 2021]. 
 
Higher Order Wavefront Sensing (HOWFS).  Proposed 
onboard image processing for the Roman Space Telescope 
Coronagraph Instrument [Krist et al. 2018].  Currently single 
threaded Python port to CPU processor.  Double precision 
calculation takes 2.2 hours, single precision 1.8 hours.  
Moving to the GPU, multi-threading, and porting from 
python to C++ would all improve performance significantly. 
In context, a similar comparison for the CGI instrument could 
not be accomplished with existing compute platforms, so 
computation necessitated a ground-in-the-loop 
implementation with a 100-hour requirement (due to the 
telecommunication logistics involved). 
 
Europa Lander Stereo Vision.  Benchmark for stereo depth 
extraction from a pair of images, targeting the Europa Lander 
Mission Concept [Europa 2021].  This application runs on 24 
image pairs, with each image natively 5120x3840 resolution.  
The benchmark is run at three different image resolutions 
(runtimes in parentheses): 5120x3840 (15.6 minutes), 
2560x1920 (2.1 minutes), and 1280x960 (19 s).   
 
3.1. Targeting Remote Sensing Instruments 
Another onboard autonomy application is “Dynamic 
Targeting” in which a lookahead sensor is used to provide 
information to an algorithm that dynamically targets the 
primary sensor and also may turn on/off or configure the 
primary sensor to optimize science.  We have tested two such 
applications on the Snapdragon CPU and are working on 
more such applications. 
 
SMICES.  SMICES is an instrument concept for a “smart” 
deep ice convective storm hunting radar (described above).    
The SMICES pointing planning application plans out the 
targeting (pointing) and operations of the radar considering 
the detected storms and observing according to the provided 

science policy while managing energy constraints. In this test 
the instrument planner operates over 15,232 timesteps where 
1 timestep = 2 seconds for a total of approximately  ~8.5 
hours CPU time.  This takes 53.6 seconds to run on the 
Snapdragon CPU in a single threaded python application. 
 
Cloud Avoidance.  This is an operations concept in which a 
lookahead sensor is used to detect clouds and imaging is 
directed to target around clouds improving data quality.  This 
technique is already being used in the TANSO-FTS 
instrument [L3Harris 2020].  We benchmark an application 
[Hasnain et al. 2021] re-implemented in Rust for the 
Snapdragon CPU that simulates such tasking based on 
historical MODIS cloud masks.  The application runs over 50 
images with each size 1354 x 2030 and the range of search 
methods runtimes (mean milliseconds per image) are: Greedy 
search 49.7 ms, Adaptive Grid Graph Search 199.2 ms, 
Mixed Grids Graph Search 13.7 ms, and Fixed Grid Graph 
Search 9.7 ms.   
 

3. RELATED AND FUTURE WORK  
 
This effort is in progress and therefore we are still preparing 
additional applications for validation on the Snapdragon 855 
within the SBC-2 on the ISS.  Deep learning applications are 
being tested on the Snapdragon 855 as well as the Intel 
Movidius [Dunkel 2022] and NVIDIA Jetson NANO.  An 
earlier version of the Intel Movidius chip flew on the ESA 
Phisat mission testing cloud detection [Giufrida et al. 2021].  
Several efforts to develop advanced flight computing are 
ongoing such as [Goodwill et al. 2021].  Another important 
part of this effort is to also evaluate and compare these 
applications on conventional flight hardware such as the 
LEON4 based Sabertooth [Whitaker 2019] and RAD 750 
[RAD750] as well as Linux ground-based computing. 
 

4. CONCLUSIONS 
 
Future space missions will use onboard autonomy to address: 
(1) time delay between earth and spacecraft and (2) very large 
amounts of data produced by instruments, especially 
hyperspectral and radar.  A new generation of processors, 
such as the Qualcomm Snapdragon 855 offer the promise of 
more powerful edge computing via both conventional CPU 
as well as GPU and DSP.   
      We benchmark remote sensing image processing and 
analysis algorithms on a Snapdragon 855 processor onboard 
the ISS hosted by Spaceborne Computer-2 by Hewlett 
Packard Enterprise.   Embedded ISS deployment is a step 
towards running these algorithms on spacecraft, landers, and 
rovers - to enable onboard data analysis, targeted downloads, 
commanding of space assets, and onboard science 
interpretation. 
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